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We present the design and performance analysis of a new integrated track reconstruction code developed for the STAR experiment at 
RHIC. The code is meant to replace multiple previous tracker codes written in FORTRAN many years ago, and to readily enable 
integration of new and varied detector components. The new tracker is written from the ground up in C++ using a strong object -oriented 
model. Key features are an abstract geometry model for representation of detector components, a flexible track representation model, a 
built-in KALMAN filter for track parameter determination, and a powerful object factory model for fast handling of numerous small 
objects such as hits and tracks. Critical issues emphasized in the implementation of this new tracker are optimization of track 
reconstruction quality, minimization of reconstruction time, and memory footprint. The new tracker will be deployed and used for 
analysis of data acquired during the RHIC year 3 run of the STAR experiment. 

 

1. INTRODUCTION 

The STAR Integrated Tracker Task Force is charged 
with the development and implementation of a new 
tracking package for the STAR experiment. The interest in 
a new tracker spurred from the realization that the existing 
tracker, written in FORTRAN, was increasingly difficult 
to maintain, and could not readily be adapted or modified 
to include tracking in detectors other than the STAR TPC. 
It also became obvious the tracker speed would render 
difficult the analysis of the very large datasets the STAR 
experiment was about to accumulate. Moreover, the 
ongoing commissioning of the SVT and FTPC was bound 
to compound the problem, increase the complexity of the 
code, and its running time. A new tracker was indeed 
needed: one that could deliver equivalent performance in 
terms of track reconstruction quality, but at much 
increased speed, and with better maintainability and 
flexibility. The new code shall be written with an object-
oriented design, provide for easy upgrades, addition or 
substitution of components. 

The integrated tracker is entering the final tuning and 
deployment phase. The tracker is being tuned for such 
components as energy loss and multiple scattering, hit 
error parameterization, seed finder search cone size and 
other factors. We present here an introduction to the 
design an implementation of the code, as well as current 
reconstruction performance.  

 

2. DESIGN AND IMPLEMENTATION 

The new tracker is meant to provide both track finding 
and fitting functionality. Hits from measured with various 
detector components must be associated to reconstruct 
particle trajectories, and fitted to determine the curvature, 
direction, and origin of the track. One must also, and more 
generally, determine the momentum and species identity 
of the particle.  

The determination of the curvature is somewhat 
straightforward. A minor difficulty however arises when 
trying to reconstruct the momentum vector of the physical 
particle. From a physics standpoint, the momentum vector 
one seeks is the vector at the vertex of origin of the 
particle.  The problem is that the point of origin can be any 

of the following: a main interaction vertex, a spurious 
interaction vertex due to event pile-up, a secondary 
vertex, or a scattering center. 

The track reconstruction algorithm must therefore 
make no a priori assumption as to the origin of the 
particles; the assignment of the track to a particular 
vertex of origin must be done after the track parameters 
have been determined.  Viewed as an object, the track 
thus consists of a collection of points acquired or found 
with the appropriate algorithm, a parameterization of 
the track based on a fit of the data points to a model or 
template, and a vertex of origin. Properties such as the 
momentum (modulus or vector), and the particle 
identity are then calculated afterwards on the basis of 
the track parameters, and the known position of the 
vertex of origin. Note that, one can make assumptions 
about the vertex of origin, and include it in the fit for 
the determination of the track parameters after the fact, 
i.e. after it has been associated with the track.  

One is then left with the core of the problem: finding 
the tracks, and fitting them to the chosen (and 
hopefully appropriate) track model to eventually 
deduce the particle final state. It then appears natural to 
define a “tracker” entity whose purposes are: 

• To find the tracks based on a store or bank of 
hits reconstructed within the relevant 
detectors.  

• To fit the hits using a suitable track model.  
• To enable association with a vertex of origin 

and optionally allow a refit of the data 
including the vertex of origin.  

• To calculate the final state particle 
information.  

2.1. General Layout 

The virtue of a Kalman Filter approach is to 
integrate in an efficient and compact way both the 
finding and fitting steps [1]. In a detector such as 
STAR, the track reconstruction in the Time Projection 
Chamber (TPC), Silicon Strip Detector (SSD), and 
Silicon Vertex Tracker (SVT), naturally proceeds from 
the outside to the inside. Track densities on outer 
layers of the TPC are smaller than on the inner layers, 
there is thus much less ambiguity in forming and 
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following tracks.  The Kalman approach enables one to 
progressively use the points available to refine the 
knowledge of the track parameters, and extrapolate 
(follow) the tracks inward.  The calculation of the track 
parameters and the extrapolation from layer to layer shall 
proceed according to the canonical Kalman filter 
algorithm described here.  The finder however needs a 
sensible seed before it can proceed in finding tracks.  

Given that the number of hits in the STAR detector can 
be rather large for a central Au+Au collision event, it is 
imperative one implements a hit data store which enables 
fast and efficient retrieval of the relevant points. The key 
word is relevance. The finder shall not have to iterate on 
all data points to find sensible candidates for the 
continuation of tracks. One should thus define a measured 
hit/point data store, which enables point retrieval based on 
a layered, coarse grain pixe lization of the detector.  

Additionally, given that as one follows the track into the 
inner TPC sectors, or the SSD and SVT, ambiguity may 
arise as to which point is best to add on a particular track. 
It may thus become appropriate to fan out the tracks and 
follow multiple leads concurrently.  

The extension of tracks from the TPC to the SVT (or 
backward) across structures such as the inner field cage of 
the TPC raises the important issue of effects caused by 
multiple scattering and energy losses. Given that much of 
the particles detected by STAR have low momenta, it is 
critical to include these effects properly in the propagation 
and fit of the tracks. We adopted much of the work done 
for the Alice detector by K. Safarik, and Y. Belikov [2]. 

The components, minimally needed, can be summarized 
as follows: 

• Hit entities that encapsulate the position, error, 
energy loss, or deposition of track in detector 
components.  

• A hit container providing polymorphic hit data 
storage and ultra fast retrieval of hits based on a 
hierarchical, layered, coarse grain representation of 
the detector.  

• Abstract track, which define the notion of track.  
• Concrete Track entities implemented following the 

chosen track model to hold reference to hits 
associated with the track, and with accessor and 
modifiers properties to set and get the physical 
properties of the track.  

• A track container providing polymorphic track 
storage and fast retrieval based on various sorting 
algorithms needed, for instance, in the analysis of 
track merging.  

• Abstract Track Finder defining the notion of 
tracker.  

• Concrete Track Finder implementing the Kalman 
track finder developed in the context of this project.  

• Abstract track seed finder defining the notion of 
track seed finder.  

• Concrete Track Finder implementing a local seed 
finder developed in the context of this project. 

2.2. Tracking Algorithm 

We have, in the past, explored a number of fitting 
algorithms for the reconstruction of tracks in a 
complex detector such as STAR. While global search 
methods based on Hough transforms, or track template 
may be deployed in very elegant, CPU efficient ways, 
and do well for the reconstruction of primary tracks, 
they typically do rather poorly in the reconstruction of 
secondary tracks – those produced from the decay of 
short lived particles, or from interaction within the 
detectors.  Moreover, the application of template 
methods would require, for use with a detector such as 
STAR, a huge set of templates (even if the obvious 
cylindrical 12 sectors, two halves symmetry of the 
TPC is exploited) and would end up requiring a rather 
substantial memory allocation. Moreover, with such 
methods, as the track finding is completed, one still 
needs to perform a fit of the tracks that accounts for 
energy loss and multiple coulomb scattering effects. 
We have thus opted for a more conventional approach 
based on a Kalman filter.  

We present an outline of the general track finding 
global strategy, track search, and fit algorithm.  

 
2.2.1.  Track Finding Strategy 

The methodology used for the track reconstruction is 
basically that of a “Kalman road finder”: given an 
existing segment of a track, use the knowledge 
provided by this segment, to predict and estimate 
where the next point on a track might be; once you got 
there, use the new point to update the knowledge of the 
track. Overall, the approach can thus be qualified as 
localized in space, or simply “local” by opposition to 
the global search techniques alluded to in the 
introduction of this section.  

STAR uses the notions of global, primary, and 
secondary tracks. Primary tracks are those emanating 
directly from the main collision vertex whereas 
secondary tracks are produced by decay or interaction 
of primary tracks within the detector. The finite 
resolution of the track reconstruction, and kinematical 
focusing of decay products concur to render the 
distinction between many secondary and primary 
tracks rather difficult. STAR thus first analyze all 
tracks as if they were secondary tracks, and do not 
include the main collision vertex. One then search for 
the fraction of those that present a good match with the 
main collision vertex and can be labeled as primaries. 
The tracks obtained in the first pass are labeled “global 
tracks” and are fitted without a vertex. The primary 
tracks are extension of the global tracks including the 
vertex: their fit includes the vertex. Note that STAR 
maintains a double list of tracks consisting of global 
and primary tracks, where tracks that match the main 
vertex appear twice - once as global and once as 
primary. It is  thus possible to recover the track 
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parameters with and without the primary vertex for further 
analysis of V0s and other decay topologies. 

   

(Global) Track Finding/Fitting

Copy tracks to StEvent 
as “Global” Tracks

Extend Tracks to Main Vertex, Refit

Find Main Vertex 
Using StEvent

Copy extended tracks to 
StEvent as “Primary” Tracks

Load Hits

(Global) Track Finding/Fitting

Copy tracks to StEvent 
as “Global” Tracks

Extend Tracks to Main Vertex, Refit

Find Main Vertex 
Using StEvent

Copy extended tracks to 
StEvent as “Primary” Tracks

Load Hits

 
 

Figure 1: General Track Reconstruction Strategy. 
Sequence of tasks involved in the track reconstruction. 
Note that the main vertex is outside the scope of this 
project. 

 
    
The persistent data model for STAR (StEvent) is a class 

containing a single event and its characteristics. This event 
model also contains a track mo del called StTrack. As we 
started to develop this new tracker, we felt the STAR 
StTrack model did not provide the flexibility and 
efficiency need for the tracker, and we thus designed and 
implemented a new track model for use within the new 
framework. Given that much of the existing STAR C++ 
code already use the StTrack model, we concluded it 
would be simpler to keep the existing track model for i/o 
purposes while conducting the track search with the 
StiTrack model. This implies that once StiTrack tracks 
have been found, they must be copied into the StEvent 
format.  

The track search and event reconstruction algorithm, 
proceeds in five basic steps. The first step consists in the 
actual track search and is described in the following 

section. It produces so called “global tracks”, or tracks 
with no association to the primary vertex.  Those 
global tracks are then copied into the STAR event 
model StEvent/StTrack by a call to a filler helper class 
method. The main vertex finder is called next (with 
StEvent as argument) to find the vertex of the event. If 
a vertex is found, the Kalman vertex finder is called, 
once again, to attempt an extension of all found tracks 
to the main vertex. The event filler is then called once 
more to copy the newly found primary tracks, i.e. those 
tracks that were successfully extended to the main 
vertex.  The track reconstruction is then completed. 

 
2.2.2.  Track Search and Fitting Algorithm 

Tracking proceeds in two steps: candidate, or “seed”, 
finding and track extension and fitting.The search first 
uses a Kalman road finder to collect track candidates 
and proceeds to extend these candidates sequentially 
until no more tracks are found. No correlations 
between tracks are considered although hits may 
initially belong to more than one track.   

The search for each track is initiated with a call to a 
Track Seed Finder. The search stops when the seed 
finder returns no seed. Track seeds are short track stubs 
consisting of a sequence of a few hits. As such, they 
carry just enough information to enable a very rough 
estimate of the track position, direction, and curvature. 
Seeds returned by the seed finder are not confined to 
any specific region of the detector. However, in the 
case of the STAR detector it is easier to find reliable 
track patterns in a low track density environment, so 
the search for seeds proceeds from the outside in. 
Therefore, the seeds returned are typically located near 
the periphery of the detector. 

 The rough estimate of the track provided by the 
seed is used by the Kalman finder to begin the 
extension and search of the track through the detector. 
Since the seeds predominantly lie near the periphery of 
the detector, the Kalman search that follows first 
proceeds inward. The Kalman-search proceeds through 
the virtual layers of the detector, step by step.  It is 
considered complete when the search reaches the inner 
most volume, or when a prescribed minimum number 
of active detector layers have been crossed without 
finding matching hits.  The mathematical details of the 
Kalman search and fit  are described in the detailed 
documentation of this project on the STAR web site. 
The Kalman finder uses the direction and curvature of 
the existing track stub to estimate (extrapolate) the 
position of the next track hit on the next available 
layer.  

Matching hits are then sought on that layer within a 
radius of confidence determined by the error 
parameters of the track. If no matching hit is found, the 
given layer is skipped. If one or more matching hit 
candidates, one calculates the increment of track chi-
square caused by the addition of the candidate hits. 
Candidates are deemed acceptable if the chi-square 

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint nucl-ex/0307015THLT004



 
 

 
 

increment is smaller than a prescribed (user settable) 
maximum. If more than one candidate hit satisfies the chi2 
requirement, one selects and adds to the track the hit with 
the lowest incremental chi-square value. Once a hit is 
added, the track parameters (i.e. curvature, direction, etc) 
are updated using the Kalman track model. As the track-
search proceeds inward and eventually reaches the inner 
most detector volume, the track parameters are 
progressively refined. The Kalman parameters (including 
the chi-square) of the track at the last hit are the best 
estimator of the track.  

Given that the track search initially proceeds on the 
basis of a seed that may lie deep inside the detector, it is 
possible that the inward finding and fitting pass might 
result in an incomplete track. Examination of the 
outermost point of the track determines if the track should 
be extended outward toward the edge of the detector. The 
search is considered complete if a number of points 
smaller than a prescribed minimum could be added, and 
the tracked proceeds to the next seed. If the track can be 
extended, the continuation of the track outward proceeds 
similarly to the inward pass. Successive virtual layers are 
search step by step for additional hits, and the track 
parameters are updated at each step. Note however that in 
order to initiate the outward pass, an outward refit of the 
track is first performed in order to update the track 
parameters of the outer most node of the track.  The fit is 
performed with the same machinery (methods) than those 
used by the finder. The only difference lies in the fact that 
the hits are already found, so one only needs to update the 
track parameters. The outward search proceeds until the 
edge of the detector or until too many layers have been 
crossed without association of hits on to the track. The 
same threshold is used here as for the inward pass.  

If an outward pass is performed, and once completed, 
the track parameters of the inner track nodes can be 
considered under constrained since not all hits on the track 
were used to calculate the track parameters for those 
nodes. An inward track refit is thus accomplished.  

If an outward pass is not performed, the track 
parameters of the outer nodes can also be considered 
under constrained. An outward final fit is thus conducted. 
This fit is deemed necessary to provide best track 
parameter knowledge on the outset of the track, which 
may then be used by user analyses for extension of the 
tracks to non-tracking detectors such as, in STAR, the 
CTB, the TOF, or the EMC.  

2.3.  Deployment and Running Conditions 

Reconstruction of STAR data is typically done at the 
RHIC Computing Facility (RCF). Each node in the 
computer bank contains two CPU’s sharing 1 gigabyte of 
memory.  Previously, reconstruction has been hindered by 
process memory leaks, which swell the size of the 
executable binary greater than 500 megabytes; thus 
preventing more than one job per node and reducing the 
efficiency of the computer farm. This situation required 

supervision and occasional intervention by the analysis 
team to maintain efficiency. Typically, individual 
reconstruction had to be limited to small set of events 
(<100), to curtail memory overrun. 

The new tracking framework, through extensive use 
of standard packages (such as the Standard Template 
Library) and  coding practices, has achieved little or no 
memory leak at runtime, with a maximum memory 
footprint significantly below the level of the previous 
tracker. A snapshot of the memory footprint for the 
tracking code was taken as 300 central events were 
reconstructed. The memory size (in Mega-bytes) is 
displayed in Figure 1 as a function of the event number 
analyzed. A sharp rise can be seen as the tracker 
allocates new blocks of memory to accommodate 
larger events, but a plateau is reached as it reuses these 
memory blocks for subsequent events.   

We stress that we were able to operate the code to 
analyze multiple thousands events without crash, 
segmentation faults, or increase of the memory 
footprint. This fact in itself will be a tremendous 
improvement over the previous incarnation of the 
STAR tracking code. We also stress that the code’s 
memory footprint of less than 400 Mbytes enables 
efficient concurrent use of the dual CPU  computers 
with 1 GB of available memory, located at BNL, 
LBNL, Wayne State University group, and other 

STAR institutions. 
Figure 2: Memory footprint vs. Event number during 
reconstruction. The increase in memory consumption 
as larger events are encountered can be seen. 
  

We also have paid careful attention to the speed 
performance of the code.  The code was designed to 
avoid repeated unnecessary operations such object 
instantiation and deletion. Data structures are designed 
to allow fast retrieval of the relevant information. We 
also avoided the use of string based searches, etc. The 
code is thus rather fast. The time performance is 
displayed in Figure 1b which shows a plot of the total 
tracking time as a function of the number of tracks in 
each event.  
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Figure 3: Total tracking time as a function of the number 
of tracks reconstructed. CPU seconds is in arbitrary units, 
which will vary depending on the speed of the computer 
used. 

 
The tracking time scales linearly with the number of 

track reconstructed.  Central collision events are 
reconstructed in less than 15 CPU seconds on a typical 
RCF node. This corresponds to an improvement of a factor 
of 6 relative to the previous tracker which should be 
extremely beneficial for the analysis of future production 
of STAR data given that it is foreseen the data volume 
accumulated each will substantially increase thanks to 
improvement to the STAR data acquisition system. It shall 
then be possible to analyze the data faster and possibly 
through multiple iterations as needed. 

3. PERFORMANCE CHARACTERIZATION 

We present below a brief summary of the performance 
of the tracker. The basic performance characteristics 
detailed here are hit finding efficiency, track 
reconstruction efficiency and momentum resolution. 

3.1. Hit Association Efficiency 

An essential measure of the performance of the tracker 
is the efficiency of associating related hits into a track. 
Figure 2 presents a study of the hit association efficiency 
of the tracker based on simulated (Monte Carlo) events. 
The plot shows in ordinate the average ratio of the number 
of found hits (i.e. associated to a track) to the number of 
hits belonging to a MC track as a function of the total 
charged particle multiplicity (in an arbitrary but fixed 
angular acceptance) of the events. The ratio of found hits 
to MC hits peaks at ~80% for low multiplicity events 
(peripheral collisions) and decreases monotonically for 
increasing event multiplicity. The rather modest value of 
80% arise in part because of losses  at sector boundaries, 
and in part due to hit losses in low pt track with segments 
nearly parallel to the TPC pad planes. The monotonic 
decrease occurs due to the increased space point 
occupancy in more central, higher track multiplicity 
events.  

Figure 4: Average Hit Association efficiency as a 
function of the event multiplicity. The hit association 
efficiency is defined as the ratio hits properly 
associated to the number of hits on the track. 

3.2. Track Reconstruction Performance 

We next consider the overall track reconstruction 
efficiency as a function of the track transverse 
momentum. Figure 5 presents a study based on 
HIJING simulated events of the charged pion track 
reconstruction efficiency as a function of the track 
transverse momentum. The efficiency is  defined as the 
number of tracks reconstructed with more than 15 hits 
(for MC tracks which also have more than 15 hits). The 
efficiency achieved with the ITTF tracker is 
consistently high (85-90%) for transverse momenta 
above 0.5 GeV/c. Softer tracks, however, are  
reconstructed with a lower efficiency by the ITTF 
tracker. These low momentum tracks are typically lost 
due to scattering in the material of the detector. 

3.3. Transverse Momentum Resolution 

The resolution of the reconstructed transverse 
momentum, shown in Fig. 6, reaches a minimum at 
500 MeV/c. This minimum (1.2%), although already 
quite good, is expected to improve with further tuning. 

The resolutions are very sensitive to the corrections 
for energy loss of the track in the detector media. 
These corrections involve detailed knowledge of the 
radiation length the track transverses, and so are 
dependant on an accurate estimate of the type, 
thickness, and placement of materials in the detector.  

Inaccurate understanding of the materials will result 
in a bias to the measured momentum. Currently, the 
bias for the integrated tracker is small, but still 
significant for the lower momentum tracks (2% bias at 
200 MeV/c). Work is proceeding to better reconstruct 
the materials traversed. Currently, this correction is 
accomplished through parameters describing the 
composition and position of the detectors set in the 
tracking code itself. Future plans include extracting 
this information from an existing online database used 
in simulation.  
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Figure 5: Track reconstruction efficiencies of the tracker as a function of the track transverse momentum.  Efficiency is 
calculated as the ratio between the number of reconstructed tracks matched to an input Monte Carlo track and the number 
of Monte Carlo tracks within the detector acceptance. Triangles represent data from the most peripheral collisions, circles 
from intermediate centralities, and squares from the most central. 

 
Figure 6: Transverse Momentum Resolution as a function of transverse momentum for all tracked partic les. The best 
momentum reconstruction is achieved for tracks with a transverse momentum of .6 GeV/c, with a resolution of 1.2. 
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4. CONCLUSIONS 

The STAR Integrated tracker has shown very positive 
initial results and performance. The implementation of the 
Kalman track finding and fitting algorithm has been 
validated. The code shows significant speed and stability 
improvements over the previous FORTRAN-based 
software package. To match track kinematic 
reconstruction performance goals, set by the current 
software, tuning and optimization of tracking parameters 
must be studied.  
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